China Aluminium Helical Gear Motor Transmission Gearbox with Motovario Foot helical gearbox design

Product Description

Merchandise Description

KPC Series helical gearbox is a new technology product which made basing on the modular technique, It can be connected respectively with motors this kind of as IEC standard motor, brake motor, explosion-evidence motor, frequency motor, servo motor and so on. it has 4 types(),power from .12kw to 4.0kw, ratio from 3.sixty six to 58.09, Max torque from 120Nm to 500Nm.It can be hook up discretionary(foot or flange) and use multi-mounting positions accordingly. This solution is broadly utilised in textile, foodstuff, beverage,tobacco, logistics industrial fields,and many others.

        Item Traits

  1. Modular development
  2. Higher efficiency
  3. Exact grinding, minimal sound
  4. Compact structural design and style
  5. Univeral mounting
  6. Aluminium housing, light in weight
  7. Carbonize and grinding hardened gears, tough
  8. Multi-composition, can be blended in various varieties to fulfill various transmission situation

       Set up:
      1.Foot mounted
      2.Output Flange mounted
      3.B14 Flange mounted

      Types:
      1.KPC..P(Foot-mounted): KPC01P,KPC02P,KPC03P,KPC04P
      2.KPCF..P(Output Flange-mounted): KPCF01P,KPCF02P,KPCF03P,KPCF04P
      3.KPCZ..P(B14 Flange-mounted): KPCZ01P,KPCZ02P,KPCZ03P,KPCZ04P

Comprehensive Images

Product Parameters

GEARBOX Choosing TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 one hundred twenty 2600 53.33  a hundred and sixty/three          
31 120 2600 45.89  413/nine          
35 120 2600 40.10  3248/eighty one          
39 a hundred and twenty 2560 35.47  532/fifteen          
forty nine 120 2380 28.50  770/27          
59 one hundred twenty 2230 23.56  212/9          
71 a hundred and twenty 2100 19.83  119/six          
seventy eight ninety 2030 seventeen.86  1357/seventy six          
96 one hundred twenty 1900 fourteen.62  658/45          
one hundred and one 90 1860 13.eighty* 69/5          
118 one hundred twenty 1770 eleven.90  2464/207          
143 a hundred and twenty 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/a hundred ninety          
302 70 1290 four.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 two hundred 4500 54.00* 54/one          
thirty 200 4500 forty six.46* 3717/80          
34 two hundred 4500 40.sixty* 203/five          
39 200 4270 35.ninety one* 3591/one hundred          
48 200 3970 28.88* 231/8          
59 200 3730 23.eighty five* 477/twenty          
70 two hundred 3520 twenty.08* 3213/one hundred sixty          
82 one hundred forty 3330 seventeen.10  3009/176          
ninety five 200 3180 fourteen.eighty one* 2961/two hundred          
106 a hundred and forty 3060 13.21  2907/220          
116 two hundred 2970 12.05  1386/a hundred and fifteen          
141 200 2780 9.93  2583/260          
159 a hundred and twenty 2670 eight.78  2703/308          
189 one hundred twenty 2520 seven.39  2601/352          
257 one hundred 2280 5.45  2397/440          
316 a hundred 2120 4.43  102/23          
383 eighty 1990 three.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 three hundred 6000 58.09  639/11          
28 three hundred 6000 50.02  2201/44          
32 300 6000 forty three.75  4331/99          
36 three hundred 6000 38.73  426/11          
40 three hundred 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5571 21.78  1917/88          
eighty one 280 4660 seventeen.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 ten.28  3053/297          
177 one hundred eighty 3590 7.93  1269/a hundred and sixty          
222 180 3320 6.31  2397/380          
255 150 3170 five.48  329/60          
311 one hundred fifty 2970 four.50  1081/240          
374 one hundred fifty 2790 three.74  2571/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 five hundred 8000 fifty eight.09  639/11          
28 five hundred 8000 fifty.02  2201/forty four          
32 five hundred 8000 forty three.75  4331/ninety nine          
36 500 8000 38.73  426/eleven          
forty 500 7950 34.62  4189/121          
forty nine five hundred 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
eighty one 480 6310 seventeen.33  3621/209          
93 460 6571 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 seven.93  1269/160          
222 260 4510 six.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 two hundred 3780 3.seventy four 2571/540          

Define Dimension:

Business Profile

About our company:
We are a professional reducer manufacturer situated in HangZhou, ZHangZhoug province.Our major merchandise is  full assortment of RV571-a hundred and fifty worm reducers , also equipped hypoid helical gearbox, Computer models, UDL Variators and AC Motors.Items are extensively used for applications these kinds of as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-producing, construction equipment, metallurgic mine, environmental safety engineering, and all types of automatic lines, and assembly traces.With quickly shipping, superior following-sales provider, innovative producing facility, our products sell well  both at property and abroad. We have exported our reducers to Southeast Asia, Jap Europe and Center East and so on.Our intention is to develop and innovate on basis of high top quality, and develop a good reputation for reducers.

Packing details:Plastic Luggage+Cartons+Picket Circumstances , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Honest-Turkey Win Eurasia

Logistics

We can dispatch items by sea, by train, by air in accordance to customer instruction

Following Sales Services

1.Routine maintenance Time and Warranty:Inside 1 yr following getting merchandise.
2.Other ServiceLike modeling assortment manual, installation guidebook, and issue resolution guidebook, etc.

FAQ

one.Q:Can you make as per buyer drawing?
A: Of course, we offer customized services for buyers accordingly. We can use customer’s nameplate for gearboxes.

2.Q:What is your phrases of payment ?
   A: 30% deposit just before creation,equilibrium T/T just before shipping and delivery.

three.Q:Are you a trading company or company?
   A:We are a manufacurer with advanced gear and knowledgeable workers.

4.Q:What’s your generation potential?
   A:8000-9000 PCS/Month

five.Q:Totally free sample is offered or not?
   A:Indeed, we can offer cost-free sample if buyer agree to spend for the courier expense

six.Q:Do you have any certification?
   A:Of course, we have CE certificate and SGS certification report.

Contact info:
Ms Lingel Pan
For any inquiries just truly feel totally free ton speak to me. Several many thanks for your sort focus to our organization!

US $45-80
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step

###

Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GEARBOX SELECTING TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5020 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2021/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6020 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74 2021/540          
US $45-80
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step

###

Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

###

GEARBOX SELECTING TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5020 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2021/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6020 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74 2021/540          

Helical Gearbox

Using a helical gearbox can greatly improve the accuracy of a machine and reduce the effects of vibration and shaft axis impact. A gearbox is a circular machine part that has teeth that mesh with other teeth. The teeth are cut or inserted and are designed to transmit speed and torque.helical gearbox

Sliding

Among the many types of gearboxes, the helical gearbox is the most commonly used gearbox. This is because the helical gearbox has a sliding contact. The contact between two gear teeth begins at the beginning of one tooth and progresses to line contact as the gear rotates.
Helical gears are cylindrical gears with teeth cut at an angle to the axis. This angle enables helical gears to capture the velocity reversal at the pitch line due to the sliding friction. This leads to a much smoother motion and less wear. Moreover, the helical gearbox is more durable and quieter than other gearboxes.
Helical gears are divided into two categories. The first group comprises of crossed-axis helical gears, commonly used in automobile engine distributor/oil pump shafts. The second group comprises of zero-helix-angle gears, which do not produce axial forces. However, they do create heat, which causes loss of efficiency.
The helical gearbox configuration is often confounded, which results in higher working costs. In addition, the helical gearbox configuration does not have the same torque/$ ratio as zero-helix angle planetary gears.
When designing gears, it is important to consider the effects of gear sliding. Sliding can lead to friction, which can cause loss of power transmission. It also leads to uneven load distribution, which decreases the loadability of the helical planetary gearbox.
In addition, the mesh stiffness of helical gears is commonly ignored by researchers. An analytical model for the mesh stiffness of helical gears has been proposed.

Axial thrust forces

Several options are available for axial thrust forces in helical gearboxes. The most obvious is to use a double helical gear to offset the force component. Another option is to use a thrust bearing with a lower load carrying capacity. This becomes a sacrificial component.
In order to transmit a force, it must be distributed along the contact line. This force is the sum of tangential, radial and axial force components. All these components must be transferred from the source to the output. This is a complex process that involves the use of gears.
The axial force component must be transferred through the gears. The resultant force is then divided into orthogonal components and divided into the thrust directions. The radial force component is from the contact point to the driven gear center.
The axial force component is also determined by the size of the gear’s pitch diameter. A larger pitch diameter results in a greater bearing moment. Similarly, a larger gear ratio will produce a higher torque transmission.
It should be noted that the axial force component is only a small part of the total force. The normal force is distributed along the contact line.
The double helical gear is also not a perfect duplicate of the herringbone gear. It has two equal halves. It is used interchangeably with the herringbone gear. It also has the same helix angle.helical gearbox

Reduced impact on the shaft axis

Increasing the helix angle of a gear pair will reduce resonance effects on the shaft axis of a helical gearbox. However, this will not reduce the overall vibration in the gearbox. In fact, it will increase the vibration. This can lead to serious fatigue faults in the drive train.
This is because the helix angle has an effect on the contact line between two teeth. As the helix angle increases, the length of the contact line decreases. In addition, it has an effect on the normal force and curvature radii of the teeth. The pressure angle also affects the curvature radii.
Helical gears have several advantages over spur gears. These advantages include: lower vibration, NVH (noise, vibration and harshness) characteristics, and smooth operation under heavy loads. They also have better torque capability. However, they produce higher friction. They also require unique approaches to control their thrust forces.
The first step in reducing resonance effects is to regulate the meshing frequency of the helical gear stage. This can be done by varying the shift factors in the gear. If the shift factors are too large, then the gear will experience resonance effects. The helix angle is also affected by the gear’s shift factors. It is therefore important to control the gear’s geometry in order to reduce the resonance effects.
Next, the effects of the web structure and rim thickness on the root stress of the gear are examined. These are measured by strain gage. The results indicate that the maximum root stress is obtained when the worst meshing position is reached.

Quieter operation

Compared to spur gears, helical gears are much quieter in operation. This is due to their larger teeth. Aside from this, they have a higher load-carrying capacity. They also run smoother and have a higher speed capability. Helical gears are also a good substitute for spur gears.
The most significant parameter relating to noise reduction is the gear contact ratio. It ranges from below 1 to more than 10 and is determined by the number of teeth intersecting a parallel shaft line at the pith circle. It is also a good indicator of the level of noise reduction that helical gears provide.
In addition, helical gears have a lower impulse flexure than spur gears. This is because the contact point slides along the helical surface of each tooth. This also adds internal damping to the gear system.
While helical gears are less noisy than spur gears, they do have a high level of wear and tear. This can affect the performance of the gear. However, it is possible to improve the smoothness of the tooth surface by grinding. In addition, running the gears in oil can also help improve the smoothness of the tooth surface.
There are many industries that use helical gears. For example, the automotive industry uses them in their transmissions. They also are used in the agricultural industry. They are often used in heavy trucks.
Helical gears are also known to generate less heat and are quieter than other gears. They can also deliver parallel power transfers between parallel or non-parallel shafts.

Improved accuracy

Increasing the accuracy of a helical gearbox is the key to its operation and reliability. The accuracy of the gearbox is dependent on several features. Among the most important are the profile and lead. Moreover, the power requirements of a gear drive should be taken into consideration.
The profile is the most sensitive feature of a helical gear. If the profile is not symmetric, the gear will run with a noisy spur gear. In addition, the profile is also the most sensitive to lead.
A helical gearbox plays a key role in the power transmission of industrial applications. However, the heavy duty operating conditions make it susceptible to a variety of faults.
A helical gearbox’s performance depends on the accuracy of the individual gears. This is accomplished by minimizing the backlash. A common way to reduce backlash is to approach all target positions from a common direction. This approach also reduces transmission noise.
The accuracy of a helical gearbox can be improved by using a flexible electronic gearbox. This can reduce the degree of twist. Moreover, it can increase the accuracy of gear machining.
A helical gearbox with an electronic gearbox can increase the accuracy of twist compensation. It can also improve the linkage between B-axis, C-axis, and Z-axis. Moreover, the electronic gearbox will ensure the linkage relationship between Y-axis, Z-axis, and C-axis.
The accuracy of a helical Gearbox can be improved by calculating the position error of the gear train. Pitch deviation and helix angle deviation are two types of position error.helical gearbox

Reduced vibration

Using helical gearboxes can reduce vibration and noise. These gears are used in a variety of applications, including automotive transmissions. Moreover, these gears are quiet enough to operate in noise-sensitive applications.
Using CZPT software, three different gearbox housing designs are compared. The external dimensions and mass of each design are kept constant, but different quantities of longitudinal and transverse stiffeners are employed. The resulting models are then compared to experimental results. In addition, the free vibration response of these models is analyzed. The results are shown in Fig. 5.
In terms of noise reduction, the cellular model produces the lowest sound pressure level. However, the cross model produces the higher sound level. The cellular model also produces better peak to peak results.
The input-stage gear pair is the power source of the output-stage gear pair. The output-stage gear pair’s vibration is also studied. This includes a phase diagram and a frequency-domain diagram. The influence of the driving torque and the pinion’s velocity on the vibration is studied in a numerical manner. The time evolution of the normal force and the lubricant stiffness is also studied.
The input-stage pinion modification reduces the input-stage gear pair’s vibration. This reduction is achieved by adding dual bearing support to the input shaft.
China Aluminium Helical Gear Motor Transmission Gearbox with Motovario Foot     helical gearbox designChina Aluminium Helical Gear Motor Transmission Gearbox with Motovario Foot     helical gearbox design
editor by czh 2023-01-04